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Abstract

Poaching is driving many species toward extinction, and as a result, lowering

poaching pressure is a conservation priority. This requires understanding

where poaching pressure is high and which factors determine these spatial

patterns. However, the cryptic and illegal nature of poaching makes this diffi-

cult. Ranger patrol data, typically recorded in protected area logbooks, contain

information on patrolling efforts and poaching detection and should thus pro-

vide opportunities for a better understanding of poaching pressure. However,

these data are seldom analyzed and rarely used to inform adaptive manage-

ment strategies. We developed a novel approach to making use of analog log-

book records to map poaching pressure and to test environmental criminology

and predator–prey relationship hypotheses explaining poaching patterns. We

showcase this approach for Golestan National Park in Iran, where poaching

has substantially depleted ungulate populations. We digitized data from >4800

ranger patrols from 2014 to 2016 and used an occupancy modeling framework

to relate poaching to (1) accessibility, (2) law enforcement, and (3) prey avail-

ability factors. Based on predicted poaching pressure and patrolling intensity,

we provide suggestions for future patrol allocation strategies. Our results rev-

ealed a low probability (12%) of poacher detection during patrols. Poaching

distribution was best explained by prey availability, indicating that poachers

target areas with high concentrations of ungulates. Poaching pressure was esti-

mated to be high (>0.49) in 39% of our study area. To alleviate poaching pres-

sure, we recommend ramping up patrolling intensity in 12% of the national

park, which could be achievable by reducing excess patrols in about 20% of the

park. However, our results suggest that for 27% of the park, it is necessary to

improve patrolling quality to increase detection probability of poaching, for

example, by closing temporal patrolling gaps or expanding informant
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networks. Our approach illustrates that analog ranger logbooks are an

untapped resource for evidence-based and adaptive planning of protected area

management. Using this wealth of data can open up new avenues to better

understand poaching and its determinants, to expand effectiveness assess-

ments to the past, and, more generally, to allow for strategic conservation

planning in protected areas.
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INTRODUCTION

Overexploitation of natural resources is one of the most
prevalent human pressures in protected areas (Schulze
et al., 2018). One of the main forms of overexploitation is
unsustainable and illegal hunting (hereafter: poaching),
which is driving many species toward extinction
(Challender & MacMillan, 2014). Extensive poaching
results in defaunation that erodes ecological interactions,
disrupts ecosystem functioning, and derails evolutionary
processes (Estes et al., 2011). A variety of incentives are
known to motivate poaching, including subsistence hunt-
ing, hunting to supply local or urban meat markets, retali-
ation or prevention of human–wildlife conflicts, and
hunting for the international trade of wildlife products
(Challender & MacMillan, 2014; Montgomery, 2020).
Despite the various conservation measures that are in
place, such as promoting alternative livelihoods for local
communities, educational campaigns, or improving law
enforcement, poaching continues unabated in many
protected areas and is one of the most pressing global
threats to biodiversity (Challender & MacMillan, 2014;
Schulze et al., 2018; Travers et al., 2019).

One of the main challenges in the combat against
poaching is understanding and predicting where and when
it will happen, which is crucial for devising conservation
actions (Critchlow et al., 2017; Weekers et al., 2020).
Poaching is cryptic, and, unlike other threats such as illegal
deforestation that can be tracked using satellites, it is not
easily detected (Montgomery, 2020). Poachers leave limited
traces on their activities and may be deterred from areas
where law enforcement takes place (Plumptre et al., 2014).
In addition to data scarcity, the detection of poachers and
their signs is a function of search effort, and therefore, com-
parisons of counts of poaching events can lead to erroneous
conclusions (Keane et al., 2011). Scarce and imperfect detec-
tions of events, such as in the case of poaching, make most
statistical frameworks unsuited for analyzing poaching
(e.g., regression models, niche models, species distribution

models) (Keane et al., 2008). Given the imminent threat
from poaching across the world, approaches to understand-
ing and predicting spatiotemporal patterns of poaching are
urgently needed.

In recent years, there have been marked advances in
the development of tools to precisely record both patrol-
ling effort and detections of noncompliances. Such infor-
mation could enable the use of occupancy models that
specifically account for imperfect detection (MacKenzie
et al., 2017) and would allow for the simultaneous assess-
ment of detection probability and determinants of
poaching in the landscape. Only a few applications exist
of occupancy modeling for assessing poaching patterns,
and though all these studies highlight its applicability,
they are limited to sites with digitally collected ranger
patrol data (Critchlow et al., 2015; Linkie et al., 2015;
Moore et al., 2018). However, most protected areas do
not possess enough resources to acquire handheld GPS
units for their rangers, and where such devices exist, they
have typically been operational for only a few years, lim-
iting the ability to make inferences from such data. In
most protected areas across the world, manually kept
analog ranger logbooks remain the most common way of
documenting ranger patrols and poaching prevalence,
but these data are usually not digitized or georeferenced.
Therefore, a wealth of information on important aspects
of poaching has remained largely untapped. Developing
approaches that could make use of such logbooks for pre-
dictive modeling would allow for making valuable infer-
ences about poaching distribution across time and space
for many protected areas.

Environmental criminology theories can help improve
conservation planning by explaining conditions that enable
crimes, such as poaching, to occur (Faulkner et al., 2018;
Weekers et al., 2020). For example, knowledge of the spatial
determinants of poaching could be used to increase patrol-
ling effort in risky areas, a strategy known as hotspot polic-
ing, which can reduce crime (Braga et al., 2014). The boost
hypothesis (i.e., higher repeated crime in sites with known

2 of 13 GHODDOUSI ET AL.



opportunities) and flag hypothesis (i.e., higher repeated
crime in areas with attractive characteristics) are central
in this regard (Pease, 1998). Through a poaching lens, the
boost hypothesis means that poachers repeatedly visit the
same areas (e.g., established illegal fishing spots)
(Weekers et al., 2020). The flag hypothesis posits that cer-
tain environmental settings determine where poachers
operate (e.g., near rivers due to ample woody vegetation
to conceal snares) (Critchlow et al., 2015). Testing these
hypotheses in the context of poaching can be based on
predator–prey concepts (Marescot et al., 2020). For exam-
ple, poaching pressure can be determined by the occur-
rence of target species (Critchlow et al., 2015; Marescot
et al., 2020) or by the avoidance of detection by rangers
(Jenks et al., 2012; Linkie et al., 2015). Finally, proximity
to protected area borders, villages, or roads can be a cru-
cial factor for poaching prevalence (Moore et al., 2018;
Plumptre et al., 2014). Despite the urgency of the biodi-
versity crisis, few studies have assessed proxies of site
characteristics to identify poaching determinants
(Critchlow et al., 2015; Marescot et al., 2020), especially
in the context of the boost and flag hypotheses (Weekers
et al., 2020). This is unfortunate, because understanding
where poaching occurs in landscapes would allow for a
more evidence-based allocation of ranger patrols (Keane
et al., 2008; Plumptre et al., 2014). A regularly updated
assessment would allow for an adaptive strategy in allo-
cating ranger patrol effort. Such an adaptive manage-
ment strategy constitutes a balance between addressing
the requirements of management while acknowledging
the necessity of continued learning about the system
(McCarthy & Possingham, 2007).

Our primary goal was to understand the spatial deter-
minants of poaching pressure in order to provide recom-
mendations for planning future ranger patrol effort. To
achieve this, we developed an approach to digitizing and
georeferencing patrolling data from analog ranger log-
books and analyzed them in an occupancy modeling
framework. We used Golestan National Park (GNP) in
Iran as a case study, where poaching has depleted the
population of ungulates by 66%–89% in the past four
decades (Ghoddousi et al., 2019). Our approach is highly
relevant to a vast number of protected areas around the
world, where long-term ranger logbook data are kept but
rarely analyzed. Specifically, we address the following
research questions:

1. How can analog logbook data be used for assessing
poaching pressure?

2. What are the spatial determinants of poaching
pressure?

3. Where is poaching pressure predicted to be high?
4. How could patrolling strategies be improved based on

current patrolling intensity and poaching pressure?

METHODS

Study area

GNP (874 km2) is located in northeastern Iran and is
the oldest protected area in the country (established in
1957) (Figure 1). It encompasses three major vegeta-
tion formations: the Hyrcanian broadleaf forest, mon-
tane steppe, and arid plains. GNP (International
Union for Conservation of Nature [IUCN] Category II)
is surrounded by other protected areas, namely,
Ghorkhod Protected Area, Loveh Protected Area, and
Zav Protected Area (all IUCN Category V). There are
several villages around GNP, but not within its bound-
aries. Six species of wild ungulates occur in the
national park: bezoar goat (Capra aegagrus), goitered
gazelle (Gazella subgutturosa), red deer (Cervus
elaphus), roe deer (Capreolus capreolus), urial (Ovis
vignei), and wild boar (Sus scrofa). Almost all of them
experience high poaching pressure, except for wild
boar, which is not consumed due to religious beliefs
(Ghoddousi et al., 2019) and not preferred by poachers
(Ghoddousi et al., 2017). Thus, we did not consider
wild boar as well as goitered gazelle because of its lim-
ited distribution (only ca. 25 km2) inside the park.

A previous study in GNP showed a variety of poaching
incentives, from subsistence and trade of wild meat to tra-
dition, pleasure, and conflict with conservation bodies
(Ghoddousi et al., 2019). Poaching is predominantly con-
ducted by people from nearby villages and towns, exclu-
sively in the form of pursuit hunting using rifles
(Ghoddousi et al., 2017, 2019). GNP has nine ranger sta-
tions where the ranger patrols usually start out from and
where the logbooks are located. Daily patrol allocation in
GNP is decided rather arbitrarily by the head ranger of
each station. Patrols involve locating and intercepting
poachers, as well as recording wildlife sightings. Rangers
systematically report their daily activities in logbooks (day
entries), which contain information on patrol routes, per-
sons involved, wildlife observed, and any noncompliances
detected. The routes and observations are approximated
using the names of local landmarks such as peaks, valleys,
and other prominent geographical features. Park managers
occasionally cross-check patrol routes with the involved
rangers or directly visit them. Other illegal activities in
GNP are limited to the small-scale collection of firewood
and nontimber forest products, as well as illegal livestock
grazing, which usually occur on the periphery of the park.

Data organization

We first collated and digitized the locations of all 552 land-
marks mentioned in the logbooks (Appendix S1: Figure S1),
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as well as the main patrolling trails (754 km), with the help
of an experienced ranger (Gh. Sadizadeh, personal commu-
nication) in Google Earth. The resulting map provided a ref-
erence for the geolocation of ranger patrols and sightings
from logbook entries. We then superimposed a grid system
of 3 � 3 km2 cells over the study area to identify sampling
units (hereafter: cells) in ArcGIS 10.5 (ESRI, Redlands, CA,
USA). We included only cells with more than 50% of their
area inside the GNP (n = 96 cells). We chose this cell size
based on both ecological and patrolling considerations to be
large enough to ensure that poachers and ungulates could
occupy a sufficient number of cells (MacKenzie et al., 2017)
and to reflect the typical distribution of ranger patrols in
GNP (i.e., median distance of 10.62 km from 1029 daily
patrols) (this study; Appendix S1: Figure S2) (Marescot
et al., 2020). Moreover, this cell size reduced potential errors
from imprecise locations in our data set that may occur at
smaller cell sizes.

We analyzed 6888 logbook day entries from May 2014
to April 2016, of which 6499 reported ranger patrols. We
excluded motorized patrols conducted by motorbike or
vehicle, limited to a few roads inside and surrounding
the park, because they (i) may produce a different level of
poacher and wildlife detection probability compared to

patrols on foot or horseback and (ii) may be due to other
purposes than antipoaching (e.g., maintenance, transport
of personnel) (Hötte et al., 2016; Marescot et al., 2020). We
geolocated the remaining 4810 patrol entries by extracting
the dates and locations of landmarks and sightings of
ungulates and poachers by manually assigning them to
corresponding cells with the help of the reference map
(see preceding discussion). We used only direct sightings
(i.e., visual detection of poachers) because there is a higher
chance of misidentification of indirect signs (e.g., camps,
firepits, or animal carcasses). We acknowledge that these
signs, whenever validated, can provide important informa-
tion on the prevalence of poaching, but they are currently
potentially underreported by rangers in logbooks. Wher-
ever route descriptions were unclear, we determined them
based on the least effort movement strategy along the stan-
dard patrol routes and using the recorded locations of
wildlife sightings (Critchlow et al., 2015). For very impre-
cise descriptions or unknown routes (=398 entries),
we marked only those cells as patrolled that had been defi-
nitely surveyed. A cell was regarded as patrolled if the part
of the patrol route in that cell exceeded 500 m or if rangers
were known to patrol inside the cell for several hours.
Although rangers report the patrol route regardless of

F I GURE 1 Study area in northeastern Iran (inset map) and location of Golestan National Park (GNP), Ghorkhod Protected Area

(GHPA), Loveh Protected Area (LPA), and Zav Protected Area (ZPA)
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wildlife sightings, in some cases reported sightings allowed
for better allocation of routes to the respective cells. Multi-
ple visits of rangers to a cell within 1 day (e.g., from differ-
ent stations) were treated as a single survey for that day.

Occupancy modeling

We applied occupancy modeling to estimate the probabil-
ity of poachers’ distribution in GNP using the occu func-
tion in the unmarked package (version 0.13-2) in R
(Fiske & Chandler, 2011). Occupancy modeling accounts
for the imperfect detection bias (MacKenzie et al., 2017),
which is an important consideration in antipoaching
patrols since poachers may be present but go undetected
by rangers (Critchlow et al., 2015; Marescot et al., 2020;
Moore et al., 2018). We treat each cell as a site and each
month as an occasion (i.e., the temporal unit in which
sightings of poachers are counted as one detection), with all
patrolling efforts and sightings of ungulates and poachers
assigned to that occasion. We created a table of poaching
detection history and entered a 1 if at least one poaching
event was detected by rangers in the cell during that occa-
sion, a 0 if no poaching was detected, and NA if the cell
was not patrolled. Given the heterogeneity in patrolling
effort across sites (Appendix S1: Figure S3), we also tested
the effects of other occasion configurations on our model
performance by aggregating monthly data to 3-month and
4-month occasions and comparing their detection probabili-
ties and numbers of NA (Mackenzie & Royle, 2005). These
occasion lengths also correspond to management and eco-
logical considerations in our study area (e.g., seasonal
changes in detection probability due to weather, foliage,
species behavior, and possibly poacher activity). We con-
ducted our analysis at the finest grain (3 � 3 km2) that
our data could accommodate, because coarser resolutions
would be less relevant in terms of informing management
decisions regarding future patrol allocations.

We expected that there might be random changes in
poachers’ presence at any site at the time of patrols,
which would violate the closure assumption of occu-
pancy modeling (MacKenzie et al., 2017). Therefore, we
interpreted the occupancy estimates as the probability of
site use by poachers (MacKenzie et al., 2017). We esti-
mated site use (Ψ) as the probability of poacher presence
in a certain site during the study period based on detec-
tion/nondetection data collected from all ranger patrols.
We separately estimated the detection probability (p) of
poachers (i.e., the probability of detecting poachers by
rangers in a specific site) (MacKenzie et al., 2017). We
opted for a single-season occupancy framework because
our data from 2 years was insufficient for a multiseason
analysis, and a trial with multiseasonal models showed

credible intervals for colonization and local extinction
rates that were too large to be interpretable (Royle &
Kéry, 2007).

Poacher detection covariates

To disentangle the effects of survey-specific conditions on ,
we developed and tested two survey covariates. We used
the number of times each cell was patrolled on each occa-
sion as a covariate named effort, assuming that a higher
patrol intensity would result in a higher chance of poacher
detection. Moreover, we assumed that landscape openness
could impact and developed a visibility index by combin-
ing the average ruggedness (see Spatial determinants of
poacher distribution) and the share of forest cover in each
cell. We obtained forest cover data from Landsat 8 satellite
images with a 30-m spatial resolution (Ghoddousi
et al., 2020). We reduced forest cover values by 50% for the
winter months (October–March), when lack of foliage
increases the visibility. We standardized and summed for-
est cover and ruggedness values to create a visibility index
for each site and occasion.

Spatial determinants of poacher
distribution

To assess the spatial determinants of poaching distribu-
tion, we developed three a priori scenarios related to the
flag hypothesis of repeated noncompliance. We tested
variables related to each of these scenarios as site
covariates impacting Ψ. We assumed that poachers would
prefer areas with higher availability of target species
(Critchlow et al., 2015; Marescot et al., 2020), so we
developed a prey availability scenario. Three out of four
of the ungulate species studied (bezoar goat, red deer,
and urial) are preferred by poachers in GNP (Ghoddousi
et al., 2017), and therefore, the areas of their concentra-
tion could determine poaching distribution. We tested
this scenario by calculating and comparing two alterna-
tive prey covariates. First, we developed a catch per unit
effort (CPUE) index from ranger sightings in the log-
books. CPUE includes species biomass information, an
important aspect in poachers’ choice of prey, and it also
reflects the detectability and relative abundance of the
species that poachers encounter in different landscapes.
We calculated CPUE for each ungulate species by multi-
plying the total count from independent detections by the
species’ average biomass and dividing by the number of
visits to that cell (Ghoddousi et al., 2020). We are confident
that there was a minimal chance of misidentification of
ungulate species in our study owing to the marked
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differences in their appearance, behavior, and habitats. We
obtained the average biomass of ungulate species from
Lumetsberger et al. (2017). We then calculated a cumula-
tive CPUE as the sum of CPUEs of all four ungulates for
each cell (Figure 2). Second, to account for the detection
probability of prey sightings, we ran single-species, single-
season occupancy models for each of the four ungulate
species. We used survey covariates related to effort and visi-
bility, as detailed, as well as site covariates related to rug-
gedness, distance to ranger stations, and distance to roads
or borders (a detailed description follows). Furthermore,
we included vegetation greenness as a factor impacting
ungulate distributions using the average normalized dif-
ference vegetation index (NDVI) for each cell. We
obtained NDVI data from Moderate Resolution Imaging
Spectroradiometer (MODIS) data available from the
National Aeronautics and Space Administration (NASA)
(http://modis/gsfc.nasa.gov/data). We built and selected
models using the same approach as in our poaching
models (see following discussion) (Appendix S1: Table S1).
Using the covariates of the best models, we estimated Ψ of
each prey species for each site. We additionally calculated
mean prey Ψ for each site by averaging the single-species
estimates across all four prey species. Comparing single-
species and cumulative CPUE and prey Ψ using the same
criteria as our poaching models (see subsequent discus-
sion), we selected CPUE as our site covariate for the prey
availability scenario (Appendix S1: Table S2).

As an alternative scenario, we assumed that poachers
may avoid areas with higher ranger presence (Jenks
et al., 2012; Linkie et al., 2015) and developed a so-called law
enforcement scenario. An earlier study by Ghoddousi
et al. (2016) showed that ranger stations in GNP play an
essential role in deterring poachers. Hence, we measured the

shortest distance from the centroid of each cell to the ranger
stations in ArcGIS 10.5. Additionally, we calculated the num-
ber of patrols in each cell in the corresponding year. Finally,
we assumed that poachers may use areas with ease of access
(Moore et al., 2018; Plumptre et al., 2014) and developed an
accessibility scenario. We measured the shortest distance
between the centroid of each cell and GNP borders and the
main highway intersecting the park (Figure 1). We included
the distance to the highway because it provides easy access
to the park and is occasionally used by poachers to enter or
exit the park (GNP, unpublished reports). We did not con-
sider the border in areas where GNP adjoins one of the sur-
rounding protected areas. Additionally, we tested the impact
of landscape ruggedness and calculated its mean value in
each cell using Shuttle Radar Topography Mission data
(search.earthdata.nasa.gov). We also assumed that there
might be a temporal effect in poaching distribution and used
year as a site covariate in our analyses.

Analysis

We tested multicollinearity between all covariates
using the Pearson correlation test with a cutoff point of
r = j0.60j. Moreover, we scaled all the covariates to have
a unit variance and to minimize overdispersion
(MacKenzie et al., 2017). We used a multistep modeling
approach by first building models using survey covariates
while keeping Ψ constant. Then, we held the p covariates
in the top models and built models with site covariates.
We refrained from combining covariates from different
scenarios in our models (apart from one global model)
but tested the combinations and interactions between
variables within each scenario, resulting in 12 models.

F I GURE 2 Availability of ungulate species in Golestan National Park approximated by cumulative catch per unit effort (CPUE) for

bezoar goat, red deer, roe deer, and urial from ranger patrols
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We used the Akaike information criterion (AIC)
corrected for small sample size (AICc) for model ranking
and considered those with ΔAICc < 2 as the best
model(s) (Burnham & Anderson, 2002). We tested the
goodness of fit of the best models using a bootstrap
method with 1000-fold cross-validation (MacKenzie &
Bailey, 2004). Finally, we predicted Ψ for each year and
each cell given the parameters of the best model(s) using
the predict function of the unmarked package.

Future patrolling strategies

We used Ψ and patrolling intensity as the two criteria for
suggesting the location and intensity of future patrolling
strategies (Critchlow et al., 2017; Plumptre et al., 2014).
We used the mean of Ψ over 2 years and across all cells as
a threshold to identify areas with high and low poaching
pressure. For patrolling intensity, we averaged the number
of patrols over 2 years per cell and divided by the median
annual number of patrols across all cells. This yielded an
index where values >1 indicated cells with higher than
median patrolling effort and values <1 indicated lower
than median patrolling effort. We classified cells with high
poaching pressure and high patrolling effort as areas
requiring improvement in patrol quality, especially related
to the detection of poachers (Hötte et al., 2016). Con-
versely, cells with high poaching pressure and low patrol-
ling effort should receive higher patrolling intensity. Cells
with low poaching pressure and high patrolling effort
could have less patrolling effort in the future, while those
with low poaching pressure and low patrolling effort may
not require a change in strategy.

RESULTS

We digitized all ranger patrols recorded in the logbooks
of 9 ranger stations for 2 years, which yielded 7668 total
sightings (Appendix S1: Figure S4) of bezoar goat (1180
sightings), red deer (374), roe deer (410), and urial
(5704) and 38 poacher detections. Over the study
period, all cells (n = 96) were patrolled at least once,

but there was a high variation in the number of visita-
tions per year. A higher frequency of daily patrols was
conducted in summer compared to winter, with the
highest rates in May (birth season of ungulates) and
August–October (red deer rut) (Appendix S1:
Figure S3). Around 23% of the cells were patrolled less
than once a month. The median number of patrols per
year across all cells was 42 (0–331 patrols per year)
(Appendix S1: Figure S5). In total, 555 day entries were
missing from the logbooks.

To build our occupancy models, we first tested the
impact of different occasion lengths (1, 3, and 4 months) on
the of the null model. The 4-month occasions had the
highest and lowest NA numbers, and we performed all
subsequent occupancy analyses at this temporal scale
(Table 1). Our covariates did not show a high correlation
(r < 0.6), so we retained them in the analyses. The in our
null model was 0.12 (SE = 0.05, 95% CI = 0.04–0.26), show-
ing the rate of poacher detections during ranger patrols.
None of the covariates was selected in our top models.

Among the three competing scenarios of the spatial
determinants of poaching, prey availability was the
most parsimonious model (Table 2). The model sug-
gests increasing poaching probability in areas with
higher ungulate availability approximated by CPUE.
The mean Ψ across all cells from the best model was
0.49 (SE = 0.09). The goodness-of-fit test of the best
model did not indicate overdispersion in our data set
(ĉ = 0.71; p = 0.57).

Projection of the estimates of our best model across
our study area (Figure 3) showed that poaching was
highest in the eastern parts of the park where the highest
concentration of urial (the most abundant ungulate in
the park) occurs. Overlaying our predicted poaching pres-
sure with the patrolling effort provided useful insights on
how patrolling effort could be optimized. We identified
37 cells (38.5% of all cells) with high poaching pressure
(Ψ > 0.49). Based on our defined patrolling strategies, we
suggest improvements in patrolling quality in 26 cells
(27.0%) and higher patrolling intensity in 11 cells (11.5%)
(Figure 4). In 40 cells (41.7%), patrols may continue
unchanged, and in 19 cells (19.8%), lower patrolling effort
is suggested (Figure 4).

TAB L E 1 Effect of different occasion lengths on detection probability (P) and naïve occupancy (ψnaïve)

Setup No. cells No. occasions No. NAs ψnaïve p

3 � 3 km2 cells, 1-month occasion 96 24 600 0.63 0.03

3 � 3 km2 cells, 3-month occasion 96 8 85 0.68 0.07

3 � 3 km2 cells, 4-month occasion 96 6 45 0.55 0.12

Note: The bold text indicates the setup selected for our subsequent analysis based on the highest p and lowest number of NAs.
Abbreviations: NA, cells not patrolled.
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TAB L E 2 Occupancy models of poaching distribution ranked by Akaike information criterion corrected for small sample size (AICc)

with detection probability (P) and site use (ψ) covariates representing prey availability (Prey avail), law enforcement (LE), and accessibility

(Access) scenarios

Variable

Model coefficient (SE)

k AICc ΔAICc

AICc

w (%)

ψ p

Intercept CPUE Rug B/H RS Rug + BH RS � patrol Patrol Year Intercept Effort Vis

Prey avail 4.47
(2.68)

14.12
(7.03)

… … … … … … … �1.87
(0.24)

… … 3 253.94 0.0 88.08

Access1 41.4
(49.7)

… �67.8
(86.5)

17.8
(22.3)

… �70.8
(89.3)

… … … �2.42
(0.17)

… … 5 260.07 6.13 4.10

Global 84.94
(73.90)

�6.48
(10.36)

1.61
(6.61)

�4.12
(5.23)

�2.50
(7.25)

… … �0.56
(0.48)

0.13
(5.61)

�2.94
(0.34)

0.0.3
(0.00)

�0.18
(0.19)

10 260.42 6.48 3.44

LE1 �1.47
(0.88)

… … … … … … 0.06
(0.03)

… �2.23
(0.22)

… … 3 261.98 8.04 1.57

LE2 �1.50
(0.93)

… … … �0.69
(0.58)

… … 0.06
(0.03)

… �2.23
(0.22)

… … 4 262.30 8.36 1.34

LE3 �1.38
(1.02)

… … … �1.59
(0.80)

… 0.03
(0.01)

0.05
(0.03)

… �2.18
(0.25)

… … 5 263.51 9.57 0.73

Null 0.32
(1.03)

… … … … … … … … �2.02
(0.51)

… … 2 266.03 12.09 0.20

LE4 0.30
(1.05)

… … … �0.55
(0.49)

… … … … �2.02
(0.49)

… … 3 266.03 12.09 0.20

Access2 0.27
(0.96)

… … 0.18
(0.32)

… … … … … �2.00
(0.49)

… … 3 267.67 13.74 0.09

Year 0.73
(1.72)

… … … … … … … �0.27
(0.78)

�2.02
(0.51)

… … 3 267.90 13.97 0.08

Access3 0.31
(1.02)

… �0.09
(0.37)

… … … … … … �2.02
(0.51)

… … 3 267.96 14.02 0.07

Access4 0.26
(0.95)

… �0.05
(0.34)

0.17
(0.32)

… … … … … �1.99
(0.49)

… … 4 269.65 15.71 0.03

Abbreviations: B/H, border/highway: distance (km) from each cell to national park borders or highway; CPUE, cumulative catch per unit effort for
four ungulate species during ranger patrols; Effort, number of ranger patrols in each cell and occasion; k, number of parameters; Patrol, number of
ranger patrols in each cell; RS, ranger station: distance (km) from each cell to ranger stations; Rug, ruggedness: average ruggedness index in each cell;
Vis, visibility: combined average ruggedness and share of forest cover in each cell; Year, year number.

F I GURE 3 Distribution of predicted poaching pressure in Golestan National Park based on results of best model in occupancy

framework
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DISCUSSION

Poaching is a widespread conservation challenge in many
protected areas worldwide (Schulze et al., 2018), and
mapping poaching pressure is vital for identifying and
implementing effective antipoaching measures. However,
assessing poaching pressure is often hampered by the scar-
city of appropriate data on poaching events, and as a
result, which spatial factors determine poaching pressure
remains poorly understood (Keane et al., 2011; Marescot
et al., 2020). Here, we developed an approach to extracting
and geolocating ranger patrols and poaching detections
from analog logbooks across GNP in Iran. Using an occu-
pancy modeling framework, we estimated the locations of
poaching hotspots, which were chiefly determined by the
availability of ungulate species. We also identified large
areas of mismatch between patrolling effort and poaching
pressure, which gives clear guidance on how to optimize
future patrolling strategies by redirecting excess patrolling
to underpatrolled areas. Our approach based on logbook
data and occupancy modeling can be highly relevant for
many protected areas where poaching is an imminent
threat to wildlife and evidence-based allocation of anti-
poaching patrols is lacking.

Our study highlights the considerable, but largely
untapped, resource that analog ranger logbooks represent
to facilitate adaptive management (McCarthy &
Possingham, 2007). Records of ranger patrols and obser-
vations are often compiled in logbooks, and when these
records include information on locations and timing of
both, these data can be used to investigate threat patterns
and trends (Arias et al., 2016; Hötte et al., 2016; Keane
et al., 2011). Our approach provides conservation practi-
tioners without a georeferenced patrolling data set with a

flexible and robust tool to draw inferences on the preva-
lence of poaching and other noncompliances. This
approach can be a cost-effective alternative to the digi-
tized recording of patrolling effort when resources for
procuring devices and training of staff are unavailable.
Despite the lack of exact coordinates, we were able to
conduct our analysis at a scale (3 � 3 km2) relevant for
management and finer than some previous studies using
GPS locations (Linkie et al., 2015; Marescot et al., 2020).
To further facilitate the usefulness of analog logbook
records, logbooks could include a map of the protected
area with the location of patrol cells, the main land-
marks, and patrol routes. This would allow rangers to
directly mark their patrols and allocate their sightings to
corresponding cells (Linkie et al., 2015), which would
simplify later digitizing and georeferencing of records.
An additional major advantage of our approach is that
logbook data from the past can be utilized, expanding the
time span of poaching assessments to provide informa-
tion on conservation effectiveness over time. This could
be valuable also for protected areas where analog log-
books are no longer used and digital recording of ranger
patrols has become the standard.

Modeling of poaching pressure in an occupancy
framework provided deep insights into the spatial deter-
minants of poaching. We tested alternative models, all
related to the flag hypothesis in environmental criminol-
ogy, assuming that repeated noncompliances were con-
centrated in space and determined by site characteristics.
We found that prey availability, approximated by ungu-
late biomass, was the main determinant of poaching pres-
sure, in line with other studies (Barichievy et al., 2017;
Critchlow et al., 2015; de Matos Dias et al., 2020). Several
studies (Critchlow et al., 2015; Weekers et al., 2020) also

F I GURE 4 Suggested strategies for optimizing patrolling effort in Golestan National Park based on past patrolling intensity and our

estimated poaching pressure
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showed the relevance of the boost hypothesis to spatial
patterns of poaching pressure. These two hypotheses are
not mutually exclusive but are rather intertwined and
could be considered complementarily (Tseloni &
Pease, 2003). Because our data were only from 2 years
and contained a limited number of poaching detections,
we were unable to directly test the boost hypothesis,
which would be a beneficial extension of our work in
future studies, once sufficient data have been collected.

Our predictive maps showed that poaching pressure was
higher in the eastern half of the park. This trend was mainly
determined by the abundance of urial in themontane steppes,
a preferred prey species for poaching (Ghoddousi et al., 2019).
Considering this finding, as well as poaching incentives in
Golestan (Ghoddousi et al., 2019), we inferred that commer-
cial incentives (e.g., supplying illegal meat markets) were of
particular importance, because poachers seek to maximize
their offtake in areas with higher prey biomass. Given these
context-specific variations in poaching pressure, resulting
from different incentives (e.g., subsistence vs. recreational),
determinants (e.g., prey availability vs. terrain), andmodalities
(e.g., snaring vs. shooting), we discourage the use of large-
scale approximations through indices such as accessibility
(Benitez-Lopez et al., 2017) for devising conservation actions.

The low detection probability of poaching (p = 0.12)
in our study highlights that despite the prevalence of
poaching (Ghoddousi et al., 2019) and regular patrols,
poachers frequently go undetected. A similarly low rate
of poaching detection probability over 10 years was found
in an African protected area (Moore et al., 2018). Gener-
ally, this highlights the need to improve the detection of
poachers during patrols, which is easier said than done.
We were unable to identify survey covariates affecting
the detection probability, which could help identify ave-
nues for improved detection. Given the importance of
understanding factors influencing poaching detection for
optimizing patrolling strategies, future studies should
focus on testing a wider set of detection covariates. For
example, the influence of the number of rangers per
patrol or local informants’ tip-offs on poacher detection
could be considered in the future (Linkie et al., 2015;
Moore et al., 2018). Until it becomes clearer what deter-
mines detection probability, directing patrols to areas
under high poaching pressure, as highlighted by our
approach, should be a priority.

Although a growing body of literature suggests that
targeted patrolling effort is linked to improved compli-
ance and species responses (Hilborn et al., 2006; Linkie
et al., 2015; Moore et al., 2018), robust allocation of
patrol distribution and intensity is not easy (Dhanjal-
Adams et al., 2016; Keane et al., 2008). Our results
provide ample opportunities for guiding antipoaching
measures and, more generally, for adaptive

management through periodic assessment of where
poaching is most likely to occur in landscapes, thus
feeding into an updated planning of future law enforce-
ment allocations. We estimated that in around 58% of
the park, restructuring of patrolling efforts would be
beneficial in terms of reducing the poaching pressure
using three complementary strategies. Specifically, we
determined that excess patrolling effort in areas under
low poaching pressure (20% of the park) could be
redirected to underpatrolled areas (12% of the park).
Such adaptations in resource allocation based on levels
of illegal activity and patrolling effort are known to
improve law enforcement efficiency (Critchlow
et al., 2017) and represent cost-effective ways to reduce
poaching pressure without requiring additional
resources, which should be part of an adaptive manage-
ment framework.

While redirecting patrolling effort could address law
enforcement deficiency in some areas, in around 39% of
Golestan high poaching pressure persisted despite a high
patrolling effort. Given the current level of resources
available for law enforcement, a further increase of
patrolling effort in these areas might not be feasible. Yet,
the quality of patrols could be improved (Critchlow
et al., 2017; Milner-Gulland & Leader-Williams, 1992;
Plumptre et al., 2014). Previous studies (Barichievy
et al., 2017; Haines et al., 2012) showed that poachers
might be more active during evening hours, benefitting
from temporal patrolling gaps, which matches our obser-
vations from GNP. An increase in evening patrols in the
identified hotspots is thus strongly recommended (Hötte
et al., 2016). Moreover, higher patrolling intensity close
to and on public holidays, as well as further expanding
the local informant network, could increase poaching
detection (Linkie et al., 2015; Risdianto et al., 2016;
Weekers et al., 2020).

Our analyses provide an evidence-based approach to
the adaptive allocation of future antipoaching patrols
(Hötte et al., 2016; Keane et al., 2011). However,
improved law enforcement is not the only avenue for
poaching pressure mitigation (Holden et al., 2019).
Given the evidence that poaching in Golestan is driven
by commercial interests, promoting alternative liveli-
hoods for poachers should be a priority conservation
action (Ghoddousi et al., 2019). As in other experiences
(Cooney et al., 2017; Travers et al., 2019), employment
of ex-poachers in nature-based tourism, research,
and conservation professions has been successfully
implemented in Golestan (Ghoddousi et al., 2016),
which should be expanded. To make this measure effec-
tive, these initiatives should ensure that the benefits from
these alternative livelihoods are directed toward those
people who are impacted by and highly dependent on
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the national park (Ghoddousi et al., 2018; Harrison
et al., 2015). In this study, we focused on the probability
of detection of poachers by rangers and, thus, factors that
are under the control of protected area managers and
conservation practitioners. There are other important
considerations within the enforcement chain, such as
the probability of prosecution after a crime has been
detected, conviction, and punishment (Arias et al., 2016).
However, these factors depend on legal and socioeco-
nomic settings beyond the protected areas. Therefore, we
did not consider these factors in our analyses but
acknowledge their importance.

We acknowledge limitations in our analyses,
which could be addressed by future studies once
more long-term monitoring data become available.
Specifically, using a multispecies occupancy
approach (Marescot et al., 2020) would have allowed
for the use of poacher and prey detections in the
same model, which in turn could have helped to fur-
ther unravel poacher–prey spatial dynamics. How-
ever, in our case, the highly unbalanced number of
detections between poaching events (very low) and
prey occurrences (very high) did not allow for such
a multispecies occupancy model (Guillera-Arroita
et al., 2019). Moreover, we acknowledge that the rel-
atively short time period over which patrol data
were available prevented us from employing a multi-
season occupancy approach. While we believe that
the inferences based on our data set are valid and
useful for optimizing patrol effort, we encourage
conservation practitioners to use multiseason, multi-
species occupancy modeling wherever their data
allow for doing so.

Because the coverage of protected areas is increasing,
it is key that managers efficiently allocate limited
resources. Our study provides a practical approach to
doing so, using the potentially huge but so far largely
untapped resource of analog ranger patrol data in log-
books in an occupancy framework. Adapting our
approach should therefore be possible in many protected
areas around the globe and would make it possible to
(i) account for the often low and imperfect detection of
poaching; (ii) assess and understand the spatial patterns
of poaching pressure; (iii) reconstruct poaching pressure
and hotspots back in time and, thus, establish baselines
against which to evaluate effectiveness; and (iv) optimize
patrolling effort and strategies. More generally, our find-
ings highlight that one-size-fits-all recommendations for
law enforcement (e.g., optimum ranger number per area)
fail to account for variation in illegal activities among
and within protected areas and should be replaced by
evidence-based and adaptive law enforcement allocation
strategies.
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