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Abstract

Background: Tackling behavioural questions often requires identifying points in space and time where animals
make decisions and linking these to environmental variables. State-space modeling is useful for analysing
movement trajectories, particularly with hidden Markov models (HMM). Yet importantly, the ontogeny of underlying
(unobservable) behavioural states revealed by the HMMs has rarely been verified in the field.

Methods: Using hidden Markov models of individual movement from animal location, biotelemetry, and
environmental data, we explored multistate behaviour and the effect of associated intrinsic and extrinsic drivers
across life stages. We also decomposed the activity budgets of different movement states at two general and
caching phases. The latter - defined as the period following a kill which likely involves the caching of uneaten prey
- was subsequently confirmed by field inspections. We applied this method to GPS relocation data of a caching
predator, Persian leopard Panthera pardus saxicolor in northeastern Iran.

Results: Multistate modeling provided strong evidence for an effect of life stage on the behavioural states and
their associated time budget. Although environmental covariates (ambient temperature and diel period) and
ecological outcomes (predation) affected behavioural states in non-resident leopards, the response in resident
leopards was not clear, except that temporal patterns were consistent with a crepuscular and nocturnal movement
pattern. Resident leopards adopt an energetically more costly mobile behaviour for most of their time while non-
residents shift their behavioural states from high energetic expenditure states to energetically less costly encamped
behaviour for most of their time, which is likely to be a risk avoidance strategy against conspecifics or humans.

Conclusions: This study demonstrates that plasticity in predator behaviour depending on life stage may tackle a
trade-off between successful predation and avoiding the risks associated with conspecifics, human presence and
maintaining home range. Range residency in territorial predators is energetically demanding and can outweigh the
predator’s response to intrinsic and extrinsic variables such as thermoregulation or foraging needs. Our approach
provides an insight into spatial behavior and decision making of leopards, and other large felids in rugged
landscapes through the application of the HMMs in movement ecology.
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Background
Analysing animal movement and decision making mech-
anisms helps understanding of inter- and intraspecific
interactions, the dynamics of populations, and their dis-
tribution in space [1, 2]. In movement ecology, state-
space models have been used to analyse time-indexed lo-
cation data to predict the future state of a system from
its previous states probabilistically via a process model
[3, 4]. One particularly popular state-space model is the
hidden Markov model (HMM), which can be used to de-
scribe animal movement as arising from a finite number
of hidden behavioural states [5, 6]. The behavioural state
process is defined as a Markov chain, i.e. the state at the
next time step depends only on the current state. It is
parameterized by its transition probabilities and an ini-
tial distribution [6, 7]. The observation process most
often comprises the step lengths and turning angles of
the animal, assumed to be driven by the underlying un-
observed states [1, 7].
Decisions concerning movement across the landscape

are affected by a variety of intrinsic and extrinsic factors.
Age, sex and life stage, particularly range residency are
key determinants of movement patterns [8, 9]. Likewise,
hunger can mediate decision-making and how predators
react to risk in their environments [10, 11]. In contrast,
movement can vary due to extrinsic factors such as re-
source availability [8, 12–14], risk avoidance [15–17] and
thermoregulation [18]. Various empirical studies have
highlighted behavioral plasticity as a function of intrinsic
and extrinsic factors in predators; however, research
conceptualizing the interaction of these factors in shap-
ing decision making across predator life stage is uncom-
mon [8, 13].
Food caching, defined as storing and/or securing food,

is an evolutionary strategy adopted by predators which
can reduce kleptoparasitism or safeguard surplus food for
future consumption. It is common in carnivores from red
foxes Vulpes vulpes [19] to leopards Panthera pardus [20]
and grizzly bears Ursus arctos [21]. Identifying when food
is cached is useful for characterising kill sites, and conse-
quently quantifying predator–prey dynamics [22, 23]. Al-
though behavioural classification using the HMM
trajectories are increasingly applied for different taxa, they
have rarely been utilized to classify types of movement or
to identify caching or kill sites [13, 24].
Here, we used HMMs on global positioning system

(GPS) data collected from a food-caching predator, the
Persian leopard P. p. saxicolor in northeastern Iran. We
investigated how intrinsic and extrinsic factors interact
to shape movement patterns, and how that is affected by
life stage. We first examined life stage-based behavioural
plasticity by estimating activity budgets during general
(all relocation data) and caching (only relocation data
around kills) phases of behaviour, informed using field

confirmation of kill sites. We modeled a leopard’s behav-
ioural states in relation to ambient temperature and diel
patterns, two extrinsic factors associated with thermo-
regulation [18] and the well-established nocturnal and
crepuscular activity pattern [12, 17, 25], respectively in
leopards. We expected that increased hunger (days since
last feeding) would trigger more searching behaviour
[11], represented by long step lengths and small turning
angles (i.e. fast and directed movement). Thus, we
assessed the association between the behavioural re-
sponses and the likely current hunger of the individual.
Finally, we estimated the activity budgets of different
movement states at the two general and caching phases
and investigated how they vary across the life stages.
Our HMM analytical framework helps us to unfold the
association between energetic demands and behavioural
decision-making which has implications for predator-
prey dynamics, resource selection and even human wild-
life interaction.

Methods
Study species and area
We studied leopards in Tandoureh National Park in
north-eastern Iran (ca. 20 km from the Turkmenistan
border). The park has been protected since 1968 and
covers 355 km2. It ranges in elevation from from 1000 to
2600 m and is characterized by mountains with scattered
juniper trees Juniperus sp. Prey availability in Tandoureh
is affected by the national park boundaries, with wild
medium-sized prey available only inside the park,
whereas domestic animals are found exclusively outside
the park where human settlements are located. The only
exception is wild pig Sus scrofa, which is occasionally
found in rural areas, outside the national park [26].The
diet of leopards in the study area is composed of around
80% of wild ungulates and 20% domestic animals [23].
Using the auto-correlated Kernel density estimation
method, we estimated a mean home range of 103.4 ± SE
51.8 km2 for resident male leopards [27]. If three-
dimensional topographic estimation to account for vertical
relief is considered, leopards’ home range will increase up
to 38%, making them larger than has hitherto been
observed in other studies of Asian leopards [28].

Leopard capturing and handling
We captured leopards with Aldrich foot-snares modified
extensively to reduce risk of injury and remotely moni-
tored with VHF trap transmitters (Wildlife Materials,
Inc., Illinois, USA) every 1–2 h. A wild pig carcass was
used as bait, normally hanging from a tree or rock.
Traps were also deployed along trails leading to the
baits. In summer, we deployed traps along trails leading
to water sources, sometimes without bait (see [29] for
more details).
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We immobilized leopards using a combination of keta-
mine 10% (Alfasan, Nederland BV) 2 mg/kg, medetomi-
dine HCl 20mg/ml (Kyron Laboratories (Pety) Ltd.,
Johannesburg, South Africa) 30 μg/kg and butorphanol
0.2 mg/kg (Torbugesic®, Fort Dodge Animal Health Fort
Dodge Animal Health, Iowa 50,501 USA) delivered
intramuscularly with a dart gun (Daninject, Denmark)
using a 1.5 ml dart.
We used Iridium GPS collars (LOTEK Engineering

Ltd., Newmarket, ON, Canada). Each collar incorporated
a drop-off buckle with a timer set to 52 weeks since de-
ployment. Each animal’s age was estimated based on
dental features. Anesthesia lasted for 44 to 60min,
followed by reversal using atipamazole (3 times the
medetomidine dosage) and nantroxan (the doses equal
to butorphanol), injected intramuscularly (see [29] for
more details).

Cluster investigation
In Tandoureh, leopards exhibit short-term food caching,
frequently among rocks or dense vegetation (Fig. 1)
which yield spatially aggregated GPS fixes, or clusters.
Accordingly, GPS clusters - defined as locations where
leopards remained overnight (between 18:00 and 06:00
h) within a radius of 200 m - were investigated for pos-
sible kill remains (see [23] for more details).
We followed Knopff et al. [22] who recommended re-

cording fixes every 3 h to enable the identification of
clusters. To increase success rates of locating clusters
and safeguarding a balance between battery life and ac-
quisition rate [30] fixes were taken hourly during the last
week of each month. Also, a ‘virtual fence’ option en-
abled us to upload the protected area’s boundary, so that
when leopards left the defined area, fix rate could be in-
creased to hourly. It enabled us reliably to detect kills
outside the national park where prey generally have a
smaller body mass (i.e., domestic animals) and scaven-
gers, such as herding and stray dogs (Canis familiaris),
golden jackals (Canis aureus), and striped hyenas (Hy-
aena hyaena), are more abundant.
We discarded fixes from the first 4 days post-collaring,

associated with the earliest known kill made by the leop-
ards after collaring, to avoid the bias due to possible ab-
normal movements immediately after collaring [31]. We
identified potential clusters visually using Google Earth
5 (Google Corporation 2009) and a web-based map sys-
tem for displaying telemetry data (webservice.lotek.com)
in a 6–8-day timeframe. Potential GPS cluster locations
were then uploaded on a hand-held GPS device (Garmin
GPS62S, Garmin International, Olathe, Kansas) to en-
able ground crews of ≥2 people to systematically search
within a radius of at least 100 m from each cluster loca-
tion for at least 20 min, following Knopff et al. [22]. Prey
remains were thoroughly investigated to identify prey

species. Potential cluster locations were visited between
September 2014 and May 2017, when the last leopard’s
collar stopped transmitting relocation data via the Irid-
ium satellite. Twelve locations were discarded as not be-
ing accessible because of extreme weather at high
elevations, leaving a total of 310 locations that were in-
vestigated as potential clusters. If prey remains were
found, the cluster was categorized as a “caching site”,
otherwise as a “bed site”.

Extrinsic and intrinsic covariates
To investigate the drivers of movement behaviours, we
derived two sets of extrinsic and intrinsic covariates for
each GPS fix, including ambient temperature, diel period
and hunger level. The collars recorded time of day and
temperature for each fix, the latter was used as a proxy
for the ambient air temperature due to the strong correl-
ation between collar and ambient temperatures [32].
Hunger level was defined as days since last feeding

[10]. We acknowledge that we may have missed
small prey (< 8 kg), because cluster duration,
dependent on prey size, can affect success of locat-
ing kills [33, 34]. Nonetheless, we attempted to ac-
count for the biases that ignoring small prey items
can potentially introduce to the quantified hunger
level by two means. First, ungulates’ newborn lambs,
partially comprise the spring diet of Persian leopards
in Tandoureh [23], are quickly consumable prey. We
therefore excluded the relocation data during the
first 2 months following the lambing season (1 May
through 30 June).
Second, leopards are known to use small prey [35,

36]. These are difficult to detect in cluster investiga-
tions due to their rapid consumption. We therefore
quantified the role of small-bodied prey (rodents,
lagomorphs, and birds) using fecal analysis of leop-
ard scats (see Additional file 1 for more details). We
estimated the frequency of occurrence, defined as
the percentage of total scats in which a food item
was found, as 90.4% for medium-sized mammals
(Additional file 1: Table S1). Therefore, the time
since last feeding of a medium-sized prey can reli-
ably represent hunger level as small-bodied animals
were likely to make a minor contribution to the diet
of leopards in Tandoureh.
We also investigated how the effect of these intrin-

sic and extrinsic covariates on behavioural decisions
depends on an individual’s life stage. Accordingly,
each individual’s life stage was assigned based on the
criterion of range residency behavior, as evidenced by
plots of the semi-variance in positions as a function
of the time lag separating observations (i.e., vario-
grams) with a clear asymptote at large lags [37, 38],
resulting in assigning resident or non-resident to
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collared individuals. The visual verification of range-
residency via variogram analysis was conducted using
the R package ‘ctmm’ version 0.4.0, following the
workflow described by Calabrese et al. [37].

Multistate movement analysis
We used hidden Markov models (HMMs) to infer be-
havioural states, and the corresponding movement pa-
rameters, from the movement data. The crucial

Fig. 1 Different types of kill hoarding, known as caching behaviour, in Persian leopards in Tandoureh National Park and surrounding areas along the Iran-
Turkmenistan borderland. a an urial ram under a tree, b an urial ram in dense vegetation, c a wild pig inside a rocky hollow, d a bezoar goat among cliffs
in high elevations, e & f urial rams under cliffs at the end of valleys, g left image shows the position of a dog, which is zoomed in the right image, next to
communal lands in the far background, and h a dog concealed among cliffs (Photos by M. Farhadinia, K. Hobeali, P. Behnoud, P. Moghadas and S. Firouzi)
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requirements for movement data to be suitable for
HMMs are that measurement error in positions should
be negligible and that there should be a regular sampling
unit [1]. In our previous paper, we detected neither erro-
neous fixes nor spikes in movement [27], using a script
developed by Bjørneraas et al. [31] implemented in the R
environment for statistical computing [39]. The package
“moveHMM” [7] in R was used for fitting the HMMs to
the movement tracks.
The collars were set up to alternate between a fre-

quency of one fix per hour and one fix every 3 h, as
described in the ‘Leopard capturing and handling’ sec-
tion. To accommodate the assumption of HMMs that
the sampling rate is regular, we therefore split the
data set into two: one for 1-h fixes (16,118 locations),
and one for 3-h fixes (7875 locations). The HMM pa-
rameters are dependent on the sampling scale, so for
each sampling scale, two sets of models were separ-
ately fitted for the two individual life stages, i.e. resi-
dents and non-residents.
HMMs require that the number of behavioural states

be chosen before fitting the model. In principle, it is pos-
sible to fit several models with different numbers of
states, and compare them using e.g. the Akaike Informa-
tion Criterion (AIC) to identify the better formulation.
However, simple statistical criteria have been shown to
select very large numbers of states, to the detriment of
biological interpretability [40, 41]. We considered
HMMs with three behavioural states, based on our prior
knowledge of another caching felid, puma Puma conco-
lor, suggesting that 3-state models are generally statisti-
cally well-supported and biologically interpretable. They
are resting, moderately active and traveling modes, dif-
fering in step lengths and turning angles [13].
We modeled the step lengths with gamma distribu-

tions, and the turning angles with von Mises distri-
butions. With the HMM, we estimated several
behavioural states, characterized by different distri-
butions of step lengths and turning angles. We used
the Viterbi algorithm to predict the most likely se-
quence of behavioural states under the fitted model,
i.e. to assign a state to each observed step [6]. From
the estimate state sequence, we derived the activity
budgets of the animals, i.e. the proportion of time
spent in each behavioural state. We compared the
estimated activity budgets for all relocation data to
those obtained for the caching periods only (reloca-
tion data around kill sites). Kill sites were identified
during field investigations (see ‘Cluster investigation’
for more details) and included all locations within a
radius of 200 m of kill remains, because of the pred-
ators’ tendency to leave cache sites to visit rest sites
which may be some distance away and then return
to the site to feed [42, 43].

We used covariates in the transition probabilities of
the state process, to investigate the effect of environ-
mental and individual-specific variables on behavioural
decisions. We applied a stepwise procedure to select the
covariates, and fitted four models to each data set based
on life stage: (1) no covariates, (2) time of day, (3) time
of day + temperature, and (4) time of day +
temperature + hunger. We used the AIC to select the
best formulation, from the candidate models. To ensure
that the effect of the time of day is cyclical over 24-h pe-
riods, we used trigonometric link functions, as described
by Leos-Barajas et al. [44]. We included the effect of the
three covariates described above on the transition prob-
abilities of the state process, as described in Michelot
et al. [7]. We finally investigated the activity budgets of
the leopards, i.e. the estimated proportion of time spent
in each state, during general and caching phases based
on leopard life stage.
We examined the goodness-of-fit using the pseudo-

residuals of the fitted model. The pseudo-residuals
should be approximately normally distributed if the esti-
mated densities of step lengths and turning angles fit the
data well [5]. We considered only the pseudo-residuals
for the step lengths, because the definition of turning
angle pseudo-residuals is arbitrary, due to the circularity
of the variable [41].

Results
Between September 2014 and May 2017, six leopards (5
males, 1 female) were collared and monitored in Tan-
doureh (Table 1). GPS collars collected data for between
54 and 368 days per individual, representing a total
number of 56.7 monthly leopard study periods. Our GPS
locations represented 1702 leopard-days (283.7 ± SD
124.4 days/leopard; Table 1), with a high overall fix suc-
cess rate (mean 85.0% ± SD 7.6). Importantly, 17.9 ±
7.3% of collaring days overall (varying between 0.0 and
43.8% for different individuals) were located outside the
park, five of the six collared leopards had some degree
of home range overlap with communal lands including
villages, farmland and pastures (Fig. 1).
Three males (M2/Bardia, M3/Borna and M4/Tan-

doureh) exhibited constrained space use as resident indi-
viduals, based on a clear asymptote in variograms (Table
1 and Additional file 1: Figure S1). In contrast, the two
youngest leopards (F5/Iran and M6/Kaveh) lacked as-
ymptotes, showing a non-residency pattern. M1/Borzou
(an old male) showed a mixed ranging pattern. Follow-
ing 5.5 months of residency behavior inside the national
park, he started his excursions outside the park along
the borderland’s communities with regular returns to
the national park which was associated with an increase
in his semi-variance (Additional file 1: Figure S1). We
therefore split the relocation data from M1/Borzou to
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two stages of residency (5.5 months) and non-residency
(6.5 months). We present results for two sampling fre-
quencies, i.e. 1 and 3-h.

1-h data sampling interval
We fitted four 3-state models for each life stage, with
different covariate dependencies on transition probabil-
ities. The models with all covariates (time of day +
temperature + hunger) were favored by the AIC (Table 2)
for both life stages, and it is the model we describe in
the rest of the analysis. The model output is presented
in Table 2.
The states were associated with three distinct types

of movement patterns (the states can be said to be
distinct in that the confidence intervals for their attri-
butes did not overlap, Table 3). State 1 captured
short step lengths and very variable turning angles,
which corresponds to slow and undirected movement
(resting mode). State 3 captured long step lengths
and small turning angles (concentrated at zero), i.e.
fast and directed movement (traveling mode). State 2
was intermediate between states 1 and 3, and cap-
tured moderately fast and directed movement (moder-
ately active mode; Fig. 2).

The HMM framework provided strong evidence for
clear difference in the estimates of movement parame-
ters between the two life stages. Thus, regardless of the
behavioural states, mean step length was shorter in resi-
dent comparing to non-resident leopards (Table 3).
For example, in state 3 (traveling mode), the resident
leopards moved an average of 600 m per hour (95%
CI 570–625 m), whereas non-residents moved an
average of 740 m per hour (95% CI 705–777 m). The
estimates of all movement parameters, as well as the
corresponding 95% confidence intervals, are given in
Table 3. The difference between life stages is less evi-
dent for turning angles (Table 3).
There were also clear differences in how the behav-

ioural states were related to covariates across the two life
stages. The effects of temperature and hunger were
much less clear for residents compared with non-
residents. Only time of day had a strong effect on the
state probabilities (Fig. 3): the leopards are more likely
to be in state 3 (fast directed movement in traveling
mode) in the evening and states 1 and 2 in the morning,
suggesting that resident leopards use the darker hours
for patrolling. In contrast, non-resident leopards were
more likely to show directional states of movement (2
and 3) at high hunger levels, suggestive of searching for

Table 1 Details of Persian leopards collared in Tandoureh National Park, northeastern Iran (2014–2017). M1 (old male) showed a
mixed ranging pattern. He showed resident behavior until almost 5.5 months after collaring when his semi-variance increased and
he started his excursions outside the park along the borderland’s communities with regular returns to the national park

Leopard Name/ID Sex/age Capture date Last fix Number of days Life stage

M1/Borzou M/+ 10 5.2.2015 4.2.2016 368 Resident/non-resident

M2/Bardia M/8–10 3.10.2014 30.9.2015 362 Resident

M3/Borna M/5–6 28.9.2014 27.9.2015 364 Resident

M4/Tandoureh M/7–10 16.8.2016 1.04.2017 228 Resident

F5/Iran F/2–3 6.12.2015 29.1.2016 54 Non-resident

M6/Kaveh M/3–4 4.9.2015 26.8.2016 326 Non-resident

Table 2 Number of estimated parameters (K), AIC, and ΔAIC (compared with best model) for 3-state HMMs with different covariate
dependences during general phase for residents and non-residents, based on 1-h interval dataset. The effect of the time of day is
cyclical over 24 h. For both data sets, the model with all three covariates was selected by the AIC

K AIC ΔAIC Model weight

Resident individuals

Time of day + Temperature + Hunger 47 6257.7 0 1

Time of day + Temperature 41 6285.2 27.5 0

Time of day 35 6312.5 54.8 0

No covariate 23 6370.1 112.3 0

Non-resident individuals

Time of day + Temperature + Hunger 44 5849.7 0 1

Time of day + Temperature 38 5900.7 50.9 0

Time of day 32 5982.3 81.6 0

No covariate 20 6176.0 193.7 0
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prey. Similar to resident leopards, they are also more
likely to patrol in darker hours (Fig. 3).
The quantile-quantile plot of the step length

pseudo-residuals suggests some lack of fit in the tails
(Additional file 1: Figure S2). However, there was lit-
tle residual autocorrelation, so the 3-state model ap-
peared to successfully capture the autocorrelation in
the observed step lengths.

3-h sampling interval
We repeated the analysis for the data set with 3-h time
intervals, split between the two life stages. As for the
other data set, the model with all covariates was selected
by the AIC (Additional file 1: Table S2), illustrating the
three movement states with similar step length and turn-
ing angles as the 1-h time intervals (Additional file 1:
Figure S3). Note that, although they describe similar

Table 3 Estimates and 95% confidence intervals of the movement parameters, for the selected 3-state models. The step lengths are
modeled with a gamma distribution, and the turning angles with a von Mises distribution based on 1-h data set for resident and
non-resident collared leopards

State 1 (resting) State 2 (moderately active) State 3 (traveling)

Resident

Step mean (km) 0.006 (0.006,0.007) 0.095 (0.080,0.113) 0.600 (0.570,0.625)

Step SD (km) 0.005 (0.004,0.005) 0.100 (0.080,0.121) 0.430 (0.410,0.451)

Angle mean (radians) −2.97 (−2.80,-3.15) 3.10 (2.82,3.84) 0.04 (−0.03,0.10)

Angle concentration 0.46 (0.38,0.55) 0.41 (0.27,0.57) 1.11 (1.00,1.22)

Non-resident

Step mean (km) 0.009 (0.008,0.009) 0.147 (0.126,0.172) 0.740 (0.705,0.777)

Step SD (km) 0.007 (0.007,0.008) 0.180 (0.154,0.210) 0.489 (0.467,0.513)

Angle mean (radians) 3.10 (3.00,3.20) 2.74 (1.31,3.79) −0.02 (−0.07,0.03)

Angle concentration 0.57 (051,0.64) 0.08 (0.02,0.17) 1.56 (1.40,1.73)

Fig. 2 Histograms of observed step lengths (left) and turning angles (right) in the 1-h data set for general phase of resident and non-resident
leopards. The colored lines are the estimated densities in each state, and the dotted black line is their sum
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types of movement patterns, the states of the model fit-
ted to the 1-h data set cannot be easily compared with
those of the model fitted to the 3-h data set. Indeed,
discrete-time movement metrics (such as step lengths
and turning angles) depend strongly on the time step,
and cannot be compared across temporal scales [45].
The estimates and 95% confidence intervals of the move-
ment parameters are given in Additional file 1: Table S3,
showing that the step lengths and turning angles are dif-
ferent at different time scales of sampling (Table 3 and
Additional file 1: Table S3).
The stationary state probabilities are displayed in Add-

itional file 1: Figure S4 as functions of the covariates. The
effect of the time of day is similar to what was observed in

the 1-h data set for both life stages: state 3 was more likely
in the evening whereas states 1 and 2 more likely in the
morning. Nonetheless, the wide confidence bounds for all
stationary state probabilities as functions of hunger and
time of day suggested that the leopard behavioural states
do not show distinctive response to these two covariates
at 3-h sampling intervals for both life stages (Additional
file 1: Figure S4). As in the 1-h model, there was some lack
of fit for extreme step lengths, and very little residual
autocorrelation (Additional file 1: Figure S5).

Caching behavioural patterns
Out of 310 investigated potential clusters, prey remains
were found in 130 (41.9%). We found 10 prey items

Fig. 3 Stationary state probabilities for the 1-h data set during general phase for of a) resident and b) non-resident individuals, as functions of the
three covariates: time of day (left), temperature (middle), and hunger (right). The vertical lines give point wise 95% confidence intervals. States are:
1 = slow and undirected movement, 2 =moderately fast and directed movement and 3 = fast and directed movement
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assigned to three categories: wild ungulates (urial, bezoar
goat and wild pig), domestic animals (dog and sheep)
and small animals, such as Indian crested porcupine, red
fox, raptors, pigeon (Columba livia) and chukar par-
tridge (Alectoris chukar). We excluded those small kills
because they are less likely to create a food-caching behav-
iour. The leopards spent an average of 51.9 ± SD 32.3 h at
each caching site (within a radius of 200m of kill remains)
of medium-sized prey. At 30.1% of the sites, leopards
undertook brief (3.0 ± 1.0 h) excursions away from the
feeding area to which they intermittently returned.
There was strong evidence that the temporal budget

of behavioural states for 1-h sampling interval
depended on life stage. During the general phase,
residents spent more time in state 3 (fast, directed
movement in traveling mode, the green curves were
higher) whereas the non-residents spent more time in
state 1 (slow undirected movement in resting mode, the
orange curves were higher; Table 4 and Fig. 3). Caching
sites predominantly corresponded to state 1 (slow
and undirected movement) for both residents and
nonresidents (Table 4).
At longer sampling intervals (3-h), there was no

marked difference in time budget of behavioral states at
each level of caching or general phases. Accordingly,
state 1 dominated the caching phase while it was the
least common in the general phase (Additional file 1:
Table S4). Figure 4 demonstrates state decoding, with
examples of tracks of leopards in different stages (disper-
sal, home range patrolling, and raiding stock animals) as
well as illustrating the fine scale movement trajectory at
a caching site (Fig. 4e).

Discussion
The HMM approach used in this study allowed us to
elucidate the processes regulating the movement of a
food-caching predator, the Persian leopard. We examine
movement patterns at two nested scales, i.e. the ‘general’
and ‘caching phases’. We find strong evidence for a life
stage effect on the stationary state probabilities and their
associated time budget at both scales.

Our findings provided new insights into the effect of
life stages and their different movement patterns [8, 12,
46]. Resident leopards were more often mobile (state 3;
traveling mode with fast directed movement) whereas
non-resident leopards spent most of their time in less
mobile mode (state 1; resting mode with slow and undir-
ected movement). Residents need to maintain their
home range and defend access to mates regardless of
foraging or thermo-regulatory requirements, forcing
them to adopt an energetically more costly mobile be-
haviour. In contrast, non-residents need to ensure that
their foraging needs are met while avoiding conspecifics.
Thus, while meeting their foraging needs in high risk
lands through engaging in depredation on domestic ani-
mals or scavenging [23], adopting a less mobile strategy,
both during caching as well as general phases, enables
non-residents to minimize the risk.
Although environmental covariates (ambient temperature

and diel period) and ecological outcomes (predation)
strongly affected behavioural states in non-resident leop-
ards, the response in resident leopards was not clear, except
for temporal patterns, which was consistent with the noc-
turnal and crepuscular behaviour of leopards [17, 25]. Resi-
dent leopards (only males in this study) were more active in
the hours of darkness, likely to use the night time to patrol
their home range without being spotted by conspecifics or
prey (Fig. 3). There was no evidence for an effect of either
hunger or ambient temperature on their activity, suggesting
that movement is less predictable by their need for foraging
or thermo-regulation.
Non-resident leopards, in contrast, tended to remain in-

active during the daytime and warm temperatures (state 1/
resting mode) whereas they shifted to more mobile states
in colder and darker times. These diel activity and temporal
shifting behavioural patterns could be explained by thermo-
regulatory strategies [18] as well as by leopards’ making be-
havioural adjustments to minimize the risk of detection by
competitors, i.e. conspecifics and humans, and their prey
[17, 25]. In contrary to residents’ response to hunger, non-
resident leopards tended to travel more slowly with undir-
ected, convoluted orientation after a meal while they shift
to travelling mode (state 3) when hunger increases.

Table 4 Temporal budget of HMM behavioural states of the Persian leopards based on GPS relocation data at two phases based on
1-h data sampling interval for resident and non-resident collared leopards. The behavioural budget is analysed during general and
caching phases. States are: 1 = slow and undirected movement, 2 = moderately fast and directed movement and 3 = fast and
directed movement

Behavioural state Caching phase General phase

State 1
(resting)

State 2
(moderately active)

State 3
(traveling)

State 1
(resting)

State 2
(moderately active)

State 3
(traveling)

Resident individuals 58% 31% 11% 33% 20% 47%

Non-resident individuals 68% 24% 7% 44% 30% 26%
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Fig. 4 (See legend on next page.)

Farhadinia et al. Movement Ecology             (2020) 8:9 Page 10 of 13



Similarly, the temporal budget of these leopards was
affected by life stage. In Tandoureh, leopards’ caching
strategy is a combination of hoarding the kill within
available microhabitat features (Fig. 1) and with strictly
constrained movement patterns around the kill, i.e. small
step lengths and high turning angles usually with occa-
sional short bouts of leaving and returning to caches (Fig.
4e). This encamped state (resting mode) was more com-
mon in non-resident comparing to resident leopards
when caching.
Importantly, in the absence of other large carnivores,

kleptoparasitism by conspecifics can still be a major
source of losses [20]. The high population density (5.6
individuals/100 km2 [47]) and large home range overlap
between neighboring conspecifics in Tandoureh [27]
make caching behaviour important for avoiding this [20,
48].
The HMM approach somewhat underestimated the

density of very short and long step lengths. The lack of
fit of the step length distributions would be of concern
for the simulation of realistic movement trajectories, and
it could be remedied with the inclusion of additional
states in the model. However, in this study, we focused
on the classification of the tracks into movement states,
so we favored a model with fewer states and a clear bio-
logical interpretation [41] based on prior knowledge of
caching felids [13]. Also, our sample size of individual
leopards was small and male-biased. Therefore, future
HMM studies based on larger sample sizes may be able
to refine diagnostic tools of this kind to accommodate
inter-sexual differences, individual variability and the in-
fluence of life history on energetics. Finally, given the
clear shift in behaviour between general and caching
phases, the HMMs using readily transmitted GPS reloca-
tion data can objectively identify and visualize kill clus-
ters to direct field efforts, particularly in remote
landscapes.

Conclusions
Our study demonstrates that plasticity in predator be-
haviour depending on life stage may reflect a trade-off
between acquiring energetic rewards and avoiding risks
associated with conspecifics, human presence and main-
taining home range. Range residency in territorial preda-
tors is energetically demanding and can outweigh the
predator’s response to intrinsic and extrinsic variables

such as thermoregulation or foraging needs. Our ap-
proach provides an insight into the spatial behavior and
decision making of leopards, and other large felids in
rugged landscapes through the application of the HMMs
in movement ecology.
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Fig. 4 Example tracks of the Persian leopards at 1-h sampling intervals, colored by the most likely behavioural states obtained with the Viterbi
algorithm. a M1 (old male/non-resident) killing two dogs on communal lands outside the national park 25/12/2015 to 07/01/2016; b dispersal
stage of M6 (young male//non-resident) traveling from the national park through communal lands to Turkmenistan 15/02/2016 to 02/03/2016; c
two caching sites for M3 (resident male), with a bezoar goat and a domestic sheep, the latter outside the national park; d a 5 days ranging of M2
(resident male), including killing an adult urial ram 26/12/2015 to 1/3/2015; e A zoomed in part of the caching behaviour of M6 (non-resident
male), at a wild pig kill on communal lands adjacent to the national park; and f hunting a dog by M6 (non-resident male), amidst villages
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